A Connection Between Vector Bundles over Smooth Projective Curves and Representations of Quivers

Dhruv W. Rohatgi
Mentored by Vishal Arul

6th Annual MIT-PRIMES Conference May 21, 2016

Introduction

- Quiver
- Representation of Quiver
- Vector Bundle on Curve

Quiver

- Directed graph
- Multi-edges and self-loops allowed

Example

Representation of Quiver

- Vector Space for each vertex
- Linear transformation for each edge

Example

$$
1(\mathbb{R}) \xrightarrow{\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2} \longrightarrow} 2\left(\mathbb{R}^{2}\right) \xrightarrow{\beta: \mathbb{R}^{2} \rightarrow \mathbb{R}} 3(\mathbb{R})
$$

Vector Bundle on Curve

- Curve \mathcal{C}
- Vector space \mathbb{F}^{k}
- Copy of \mathbb{F}^{k} for each $c \in \mathcal{C}$
- Continuously varying

Vector Bundle on Curve

Example (Open Cylinder)

One copy of \mathbb{R} for each point on circle

Vector Bundle on Curve

Example (Open Mobius Strip)

One copy of \mathbb{R} for each point on circle.

How are these related?

Conjecture (Schiffmann, 2016)

For any $g \in \mathbb{N}^{+}$and $r \in \mathbb{N}$ and $d \in \mathbb{Z}$,

$$
A_{g, r, d}(0)=A_{\Sigma_{g}, r}(1)
$$

Definition Intermission

Definition

A partition λ is a finite non-increasing sequence of positive integers

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{l}>0
$$

The size of λ is $|\lambda|=\lambda_{1}+\cdots+\lambda_{l}$.
The length of λ is $l(\lambda)=l$.
A flat partition is one in which all elements are equal.

Example

$$
\lambda=(4,4,2,1) \quad \lambda=(3,3,3,3)
$$

Partition Reformulation

Definition

For any partition π and any g, we define the rational function

$$
B_{\pi}=\sum_{\pi_{0}, \ldots, \pi_{s}} q^{\left|\pi_{0}\right|-l\left(\pi_{0}\right)}(-1)^{s} \prod_{i=0}^{s} \frac{q^{(g-1)\left\langle\pi_{i}, \pi_{i}\right\rangle}}{b_{\pi_{i}}\left(q^{-1}\right)}
$$

where π_{0} may be the empty partition but π_{1}, \ldots, π_{s} are all nonempty, and $\pi_{0} \cup \pi_{1} \cup \cdots \cup \pi_{s}=\pi$.

Conjecture

For all partitions π, B_{π} is a polynomial.

Flat Partition Case

Theorem

For all flat partitions π, B_{π} is a polynomial.

Proving Polynomialness

Example

$$
\frac{1}{1-q}=1+q+q^{2}+q^{3}+\ldots
$$

Example

$$
\frac{1}{1-q^{2}}=1+q^{2}+q^{4}+q^{6}+\ldots
$$

Example

$$
\begin{aligned}
\frac{1-q^{2}}{1-q} & =\left(1-q^{2}\right)\left(1+q+q^{2}+q^{3}+\ldots\right) \\
& =\left(1+q+q^{2}+q^{3}+\ldots\right)-\left(q^{2}+q^{3}+q^{4}+q^{5}+\ldots\right) \\
& =1+q
\end{aligned}
$$

Proving Polynomialness

$$
\begin{gathered}
\pi=(a, a, a, \ldots, a) \\
l(\pi)=b \\
(-1)^{b} q^{(g-1) a b} B_{\pi}=c_{0} q^{0}+c_{1} q^{1}+c_{2} q^{2}+\ldots
\end{gathered}
$$

Theorem

For some N, for all $n \geq N$, the coefficient $c_{n}=0$.

Corollary

 $\operatorname{deg}(-1)^{b} q^{(g-1) a b} B_{\pi}=b(b+1)(g-1) a+b(a-1)$.
Combinatorial Interpretation

$$
c_{n}=\sum_{p} \operatorname{sign}(p), \text { where } p=\left(p^{0}, p^{1}, \ldots, p^{s}\right) \text { and } \operatorname{sign}(p)=(-1)^{s}
$$

Example $(a=2, b=5, g=2, n=50)$

$$
p=((15,10,5),(11,6))
$$

- p^{1}, \ldots, p^{s} are nonempty
- sum of lengths of partitions is $b=5$
- sum of sizes of partitions, plus $(a-1) l\left(p^{0}\right)$, is $n=50$
- each p^{i} is a d-stair partition for $d=2(g-1) a+1=5$.

Definition Intermission

Definition

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is \mathbf{d}-stair if every consecutive difference is at least d, and $\lambda_{l} \geq d$.

Example

$p^{0}=(15,10,5)$ is 5 -stair.

Example

$p^{1}=(11,6)$ is 5 -stair.

Bijection

Need to cancel out all tuples λ of the same size

$$
n=(a-1) l\left(\lambda^{0}\right)+\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{s}\right|
$$

for large enough n.
Idea: pair each tuple λ with another tuple of opposite sign - i.e. with one more or one less partition.
(1) Pair \{tuples with zeroth partition nonempty\} with part of \{tuples with zeroth partition empty\}
(2) Pair off remaining elements of \{tuples with zeroth partition empty\}

Zeroth Partition Nonempty

Example $(a=4, b=3, g=2, n=40)$

$$
((9),(19,9)) \longrightarrow((),(12),(19,9))
$$

Example $(a=4, b=3, g=2, n=42)$

$$
((18,9),(9)) \longrightarrow((),(21,12),(9))
$$

We pair

$$
\left\{p:\left|p^{0}\right|>0\right\}
$$

with

$$
\left\{p:\left|p^{0}\right|=0 \wedge p_{l\left(p^{1}\right)}^{1} \geq d+a-1\right\} \text { where } d=2(g-1) a+1
$$

Main Bijection

What's left is

$$
\left\{p:\left|p^{0}\right|=0 \wedge p_{l\left(p^{1}\right)}^{1}<d+a-1\right\}
$$

Two operations:

- Unroll
- Tuck

Main Bijection - Unroll or Tuck

Example $(a=2, d=5)$

We apply whichever comes first.

Main Bijection - Can't unroll or tuck?

Example $(a=2, d=5)$

- every partition is a singleton
- differences less than $d=2(g-1) a+1$
- first value less than $d+a-1$
\therefore size is bounded by

$$
\begin{aligned}
& \left|p^{0}\right|+\left|p^{1}\right|+\cdots+\left|p^{b}\right| \\
& \leq 0+(d+a-2)+\cdots+(d+a-2+(b-1)(d-1)) \\
& =b(b+1)(g-1) a+b(a-1)
\end{aligned}
$$

Either

- size is small
- everything cancels out

Theorem
 For all flat partitions π, B_{π} is a polynomial.

Future Directions

Conjecture (General Case of B_{π})

For all partitions π, B_{π} is a polynomial.

$$
\begin{array}{cccc}
p_{0}^{1} & p_{1}^{1} & \ldots & p_{s}^{1} \\
p_{0}^{2} & p_{1}^{2} & \ldots & p_{s}^{2} \\
p_{0}^{3} & p_{1}^{3} & \ldots & p_{s}^{3} \\
\vdots & \vdots & \ddots & \vdots
\end{array}
$$

Acknowledgements

I would like to thank:

- My mentor, Vishal Arul
- MIT PRIMES-USA
- My parents

Questions and Comments?

For any questions about quivers and vector bundles and curves, the chances are quite high that I don't know the answer.

Example

Q: What is the analogy between representations of quivers and vector bundles on curves?
A: I don't know.

